
Threat Modeling Password Storage
Enumerating & Understanding Threats

-jOHN (Steven)	

Internal CTO, Cigital Inc.	

@m1splacedsoul	

	

V0.2	

Problem
Definition

History /etc/password

etc/password

root:0:0:EC90xWpTKCo

jsteven:102:500:EC90xWpTKCo

hjackman:100:100:KMEzyulaQQ2

bgoldthwa:101:101:Po2gweIEPZ2

msoul:103:500:NTB4S.iQhwk

nminaj:104:500:a2N/98VTt2c

3	

•  Circa 1973

•  ‘one-way’ password encryption

•  chmod a+r /etc/passwd

•  DES took 1 sec per password

…bringing us to 2012
What do you see here?

How do we know what it is?

How could we figure this out?

In the news

LinkedIn

IEEE

Yahoo

…

00000fac2ec84586f9f5221a05c0e9acc3d2e670

0000022c7caab3ac515777b611af73afc3d2ee50

deb46f052152cfed79e3b96f51e52b82c3d2ee8e

00000dc7cc04ea056cc8162a4cbd65aec3d2f0eb

00000a2c4f4b579fc778e4910518a48ec3d2f111

b3344eaec4585720ca23b338e58449e4c3d2f628

674db9e37ace89b77401fa2bfe456144c3d2f708

37b5b1edf4f84a85d79d04d75fd8f8a1c3d2fbde

00000e56fae33ab04c81e727bf24bedbc3d2fc5a

0000058918701830b2cca174758f7af4c3d30432

000002e09ee4e5a8fcdae7e3082c9d8ec3d304a5

d178cbe8d2a38a1575d3feed73d3f033c3d304d8

00000273b52ee943ab763d2bb3d83f5dc3d30904

4	

SHA1('password’)= 1e4c9b93f3f0682250b6cf8331b7ee68fd8

Your passwords
WILL be

extracted from
your system

Golden Rules

#1 – Don’t be on the front
page of InfoWeek

#2 – Have a great story when
you’re on the front page of
InfoWeek

What is a
Threat Model?

What is a Threat?
An agent who attacks you?

An attack?

An attack’s consequence?

A risk?

An agent

component	

Attack
vector

Asset under attack Threat

Confusion Over “Threat”
Literature equates “threat” to “event with unwelcome

consequence”

Devolves modeling to a checklist of events

Should expand thinking about possible abuse
•  Threats help

•  Encourage thorough thought about how intentions for misuse

•  Determine “out of bounds” scenarios

We refer to “threat” as a person or agent

8 Wednesday, March 13, 13

You Are Here

9 Wednesday, March 13, 13

Architectural Risk Analysis

What is a
Threat Model?

Depiction of:

The system’s attack surface

Threats who can attack the
system

 Assets threats may compromise

Some leverage risk management
practices

Estimate probability of attack

Weight impact of successful
attack

Threat

Attack
Surface

Interacts with

Vulnerability

(Successful)
Attack

Attack Path/
Vector

Posesses

Attack Tree

Visualizes
multiple

Impact

Business
Objective

Negatively
Affects

Attack's
Result

(Unnamed)
Carries

RiskProbability Is

launches

interacts
with

exploits

results in

is susceptible to

feasible for

Security
Policy

violate

accessible to

comprised of
steps, each a

of

Business
Asset

involving a

Who are the participants

Emerging(
ThreatsPredicts

Vulnerability(
Research

Directs

Yet(unused(
vulnerabilities

Discovers

Threat(
Intelligence

Vulnerability(
Discovery(
Group

May(discover

Implement
Checks
For

Risk

Prioritizes

Vulnerabilities

Finds

Rates

!"#$%&'()*+

!"#$(,-#$./

0&$12#$.3

45$565#.(
!"#$

7.6(8"&$5%&.1

*99:%;5$%"&(,.1<.1

=>8 =>=

?#$(@%.1 >&3(@%.1 A13(@%.1

@B1.5$#

?(C(D&$.1&.$C65#.3(*$$5;E.1(

F2&52$B"1%G.3H

>(C(D&$.1&.$C65#.3(*$$5;E.1(

F52$B"1%G.3(2#.1(;1.3.&$%5:#

A(C(*$$5;E.1(I%$B()*+(;1.3.&$%5:#

*$$5;E(J.;$"1#

,";%5:(K&'%&..1%&'

LB%#B%&'(*$$5;E#(FM,NOH

P5&(%&($B.(P%33:.(FP%PH

*;;.##(Q53/%&Q(DR5;.(3%1.;$:-(

,S)(%&T.;$%"&

,-#$./U+.$((*1;BV

0&$12#$.3

!"#$%&'()*+

*99:%;5$%"&(!"#$

45$565#.(!"#$

!%'BC$12#$(F*99VH

*;;"2&$(45$5

L5##I"13(
N.#.$(8:%.&$

)*+

D&$.1&.$

!"#$%"&

4=

@B%&(8:%.&$

!"''()*+,

-.'(*"'',

-"/*'

011%"&

!2#(1&

)*+
3(44%"5/#"

D&$.1&.$

85;B.W

,$"1.

6*&(&7,

-"/*'

8)9(*,

!"#$%"&

:/$/!"#$"#

;/9"'

)4*L

<!=,

!"''()*
:/$/!"#$"#

;/9"'

!"#

$

%

&'()

>

?

?

>

?

>

?

>

*

?

>

*##.$#

81.3.&$%5:#

0#.1(*;;"2&$(45$5

*;;"2&$(P5&%92:5$%"&

Threat Model’s Diagrammatic
Elements

n Structural view

n Behavioral Views

n Threat Actors

n Assets

n Attack Vectors

n Privilege / ‘trust’

Threat Traceability Matrix

Who What How Impact Mitigation

Threat
Modeling as a

Process

Threat Modeling – High-level process

1  Diagram structure

2  Identify assets

3  Identify Threats

4  Enumerate doomsday scenarios

5  Document misuse/abuse

6  Architectural Risk Analysis

7  Iterate

1  Identify threats
2  Set particular goals
3  Partition by capability
4  Enumerate attack vectors
5  Explore state of practice on

attacks

Software
Structure &

Identify Attack
Surfaces

Given

(User)
Browser

CSR
Browser

Internet Banking App

Websphere

DB

Rest

ACH Verify
MQ

Rate
Aggregation

Internet

LDAP

More Useful
Hosting LAN

Untrusted

Database
Host

Application Server

Browser/Client Application Tier Data Tier

LAN

Internet DB

Browser

User
Controller

Javascript

LAN Middleware

Internet

Cache,
Store

Interceptors

LDAP

Banking
Controller

JSPs
JSPs

AJAX

DOM

Spring

UserAccount
Form
Controllers

UserAccount
Form
Controllers

Account

Accounts
Controller

Transfers

Balance

Credit

Loan

Pending
Tx-action
Controller

Hibernate

Browser

Javascript

AJAX

DOM

REST Services

ACH VerfiyRate Aggregation

Feed Aggregator App

Accounts
Gold

Source
Servlet Mapping

1

2

3

3

4

Account
UID

Persisted
Store

Browser

Javascript

AJAX

DOM

Account
UID

Balance

Asynch requests to FormController & UserAccount using UID

Accesses DOM info for rendering, balance sanity checks, etc

Accounts Stores Accounts/Balance info for reducing rendering latency

!"#$%&'()*+

!"#$(,-#$./

0&$12#$.3

45$565#.(
!"#$

7.6(8"&$5%&.1

*99:%;5$%"&(,.1<.1

=#$(>%.1 ?&3(>%.1 @13(>%.1

A5##B"13(
C.#.$(8:%.&$

)*+

D&$.1&.$

!"#$%"&

4E

>F%&(8:%.&$

!"''()*+,

-.'(*"'',

-"/*'

011%"&

!2#(1&

3*&(&4,

-"/*'

5)6(*,

!"#$%"&

7/$/!"#$"#

8/6"'
9!:,

!"''()*,

-"/*'

7/$/!"#$"#

8/6"'

1 – Identify Application Attack Surface

!"#$%&'()*+

!"#$(,-#$./

0&$12#$.3

45$565#.(
!"#$

7.6(8"&$5%&.1

*99:%;5$%"&(,.1<.1

=>8 =>=

?#$(@%.1 >&3(@%.1 A13(@%.1

B5##C"13(
D.#.$(8:%.&$

)*+

E&$.1&.$

!"#$%"&

4=

@F%&(8:%.&$

!"''()*+,

-.'(*"'',

-"/*'

011%"&

!2#(1&

)*+
3(44%"5/#"

E&$.1&.$

85;F.G

,$"1.

6*&(&7,

-"/*'

8)9(*,

!"#$%"&

:/$/!"#$"#

;/9"'

)4*B

<!=,

!"''()*,

-"/*'

:/$/!"#$"#

;/9"'

Diagram System/Software
structure

1)  Acquiring PW DB

2)  Reversing PWs from stolen booty

��
��	�

DB

SQLite
Auth DB

�����
��
	

������ �����
���

�������	��	�

��

Identify Frameworks
Showing frameworks indicates where important service contracts exist
‘up’ and ‘down’

!"#$%&'()*+

!"#$(,-#$./

0&$12#$.3

45$565#.(
!"#$

7.6(8"&$5%&.1

*99:%;5$%"&(,.1<.1

=>8 =>=

,91%&'

?"/;5$(@A@

,12#(>AB

*;.'%

*;.'%

*;.'%

!"#$#%&

'()"*
C5##D"13(
E.#.$(8:%.&$

)*+

F&$.1&.$

+(,-.(#

4=

?G%&(8:%.&$

+(**$/"0&

'1*$"(**&

'()"*

233.(#

+4,$3#

)*+
5$66.(7),(

F&$.1&.$

85;G.H

,$"1.

8/9$"&

+(,-.(#

:)-)+(,-(,

;)9(*

)4*C

<+=&

+(**$/"
:)-)+(,-(,

;)9(*

��
��	�

DB

SQLite
Auth DB

�����
��
	

������ �����
���

�������	��	�

��

Owned.

Host (Linux)

AppServer
(WebSphere)

Struts

Spring D
eployed App

KeyStore

C
onfiguration

PSM

��
��	�

DB

SQLite
Auth DB

�����
��
	

������ �����
���

�������	��	�

��

��
��	�

DB

SQLite
Auth DB

�����
��
	

������ �����
���

�������	��	�

��

SQLite
Auth DB

SQ
L

DB Host (Linux)

D
ata Store

KeyStore

C
onfiguration

Identify
Threat
Agents

Threat
Capability

•  Access to the system

•  Able to reverse engineer binaries

•  Able to sniff the network

Skill Level

•  Experienced hacker

•  Script kiddie

•  Insiders

Resources and Tools

•  Simple manual execution

•  Distributed bot army

•  Well-funded organization

•  Access to private information

Threats help

•  Encourage thorough thought about how intentions for misuse

•  Determine “out of bounds” scenarios

Diagram System/Software
structure

1)  Acquiring PW DB

2)  Reversing PWs from stolen booty

��
��	�

DB

SQLite
Auth DB

�����
��
	

������ �����
���

�������	��	�

��

The Threat Model 1)  Acquiring PW DB

2)  Reversing PWs from stolen booty

������� DB

SQLite
Auth DB

���	���
��

	����� 	�����

		�

		����	�����

��

�����

�s

�������

�

��

�

�������

�

��

 By capability

 Script-kiddie

 AppSec Professional

 Well-equipped Attacker

 Nation-state

Tool support (for PW cracking) is very good	

Threat Actor	

 Attack Vector	

[T1] External Hacker AV0 - Observe client operations

AV1 - Inject DB, bulk credentials lift

AV2 - Brute force PW w/ AuthN API

AV3 - AppSec attack (XSS, CSRF)

AV4 - Register 2 users, compare

[T2] MiM AV1 - Interposition, Proxy

AV2 - Interposition, Proxy, SSL

AV3 - Timing attacks

[T3] Internal/Admin AV1 - Bulk credential export

AV2 - [T1] style attack

AV3 - Direct action w/ DB

Threat Actors

Attacks Specific to PW Storage
①  Dictionary attack

②  Brute-force attack

③  Rainbow Table attack

④  Length-extension
attack

⑤  Padding Oracle attack

⑥  Chosen plaintext
attack

⑦  Crypt-analytic attack

⑧  Side-channel attack

Well-equipped

Nation State

Identify
Domain-
specific
Attacks

Attacks and Capabilities
“Top – N” Lists

•  SQLi

•  Dictionary Attacks

Best Practices

Threat Intelligence

Data feeds

32	

Can We Successfully Attack a Hash?
Depends on the threat-actor...

•  Script-kiddie

•  AppSec Professional

•  Well-equipped Attacker

•  Nation-state

Is the algorithm supported by a
tool?

Rainbow Tables: Fast but Inherent
Limitations

Tables are crafted for specific complexity and length
Source: ophcrack	

Passwords with
lengths and complexity

in the white area
aren’t cracked by the

Rainbow Table	

Table Sizes �
Search Space	

Lookup	
 Table	

(Brute	
 Force)	

Rainbow	
 Table	

(NTLM	
 hashes)	

307,000	
 word	

dic@onary	
 16	
 MB	
 461	
 MB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)4	
 338	
 MB	
 8.0	
 GB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)5	
 	
 21	
 GB	
 8.0	
 GB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)6	
 	
 1.3	
 TB	
 8.0	
 GB	

(a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)7	
 87	
 TB	
 8.0	
 GB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)8	
 5,560	
 TB	
 134.6GB	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)9	
 357,000	
 TB	
 No	
 table	

	
 (a-­‐z	
 |	
 A-­‐Z	
 |	
 0-­‐9)10	
 22,900,149	
 TB	
 No	
 table	

Brute Force Time for SHA-1 hashed,
mixed-case-a alphanumeric password

Per User Table Building

	
 8	
 Characters	
 	
 9	
 Characters	

AQacking	
 a	
 single	

hash	
 (32	
 M/sec)	

NVS	
 4200M	
 GPU	

(Dell	
 Laptop)	
 80	
 days	
 13	
 years	

AQacking	
 a	
 single	

hash	
 (85	
 M/sec)	
 $169	
 Nvidia	
 GTS	
 250	
 30	
 days	
 5	
 years	

AQacking	
 a	
 single	

hash	
 (2.3	
 B/sec)	

$325	
 ATI	
 Radeon	
 HD	

5970	
 1	
 day	
 68	
 days	

Find Ancillary Targets
Hosting LAN

Host System

Application Server

Websphere

Struts 2.0

LAN
Internet

VerifyPWLogin
Servlet

JavaServer
PagesJavaServer
Pages

Config

XML

Keystore

Encrypted

App.EAR

Binary

PW DB

Linux

SSH

SSL

37	

Key Theft (technology)

38	

Hosting LAN

Host System

Application Server

Websphere

Struts 2.0

LAN
Internet

VerifyPWLogin
Servlet

JavaServer
PagesJavaServer
Pages

Config

XML

Keystore

Encrypted

App.EAR

Binary

PW DB

SSH

SSL

Alternative to Key Theft
Hosting LAN

Host System

Application Server

Websphere

Struts 2.0

LAN
Internet

VerifyPWLogin
Servlet

JavaServer
PagesJavaServer
Pages

Config

XML

Keystore

Encrypted

App.EAR

Binary

PW DB

Linux

SSH

SSL

39	

Matrix
ATK-1.1 : Resist “chosen plaintext” attacks - Attackers possessing system access and a valid account [T1] (See [T1.AVA01], [T5.AVA11]) should not be able to:

Discern password protection scheme

Attack another user [V2] in O(V1pw) time

Choose and use set(s) of credentials and discern scheme cryptographic secrets

ATK-1.2 : Resist “brute-force” attacks - Attackers possessing access to PW DB and knowledge of protection scheme (See [T1.AVA02]) should not be able to:

Discern individual account credentials in reasonable time

•  Difficulty >> O(V1pw)

•  Calendar time >= 1 yr

Discern all account credentials in reasonable time

•  Difficulty >> O(Vpw) * Population(V)

•  Calendar time >= 1 yrs

ATK-1.3 : Resist D.o.S. as a result of entropy/randomness exhaustion (See [T5.AVR08]);

ATK-1.5 : Resist identifying identical credentials by observing <protected>(PW) (See [T1.AVA00], [T3.AVR03, T5.AVA12, T5.AVR04]);

ATK-1.6 : Prevent attackers from generating valid forms <protected>(PW) without knowing credentials and possessing any/all secrets;

ATK-1.7 : Prevent attackers from exfiltrating any ancillary secrets associated with <protected>(PW), such as MAC or encryption keys (See [T3.AVA05-T3.AVA09]);

ATK-1.8 : Prevent attacks from gaining information about plain/digest-text through side-channel or timing attack: for instance, gauging how long equality check
between two digests takes (See [T5.AVR05]); [*TA]#

ATK-1.9 : Prevent attackers from crafting a extended plain-text that collides with [V1] digest w/o knowing V1 plaintext password (i.e. length extension attacks or
those attacks seeking to influence a final block fed to mac/cipher function) (See [T5.AVR07]); [*LE]#

40	

Matrix (Subtle)
SCC-1.1 : Prevent attackers from gleaning information about server secrets or [V1]

plaintext through multiple chosen plaintexts (such as (PW, PW’) and (PW’, PW’’) :
PW’ = digest(PW)); [RG]#

SCC-1.2 : Prevent attackers from gleaning information due to use of a common key
between cipher and mac constructs, such as when CBC-MAC used; [HA]#

SCC-1.3 : Prevent leakage of information (such as password, key material, initialization
vectors, etc.) when using cryptographic ciphers, hashes, or MACs.

SCC-1.4 : Assert that input to cryptographic primitives possesses the appropriate level of
randomness without imposing such undue requirements on the system so as to
easily exhaust its entropy thus denying service;

SCC-1.5 : Bound input to those primitives which fall prey to length-extension attacks;

SCC-1.6 : Take care to avoid padding oracle attacks where applicable;

SCC-1.7 : Take specific steps to prevent primitives from leaking information about
plaintext or keys when attackers have access to plaintext/ciphertext pairs.

41	

Thank you for your time.

42 Wednesday, March 13, 13

Who owns the table?
Who What How Impact Mitigation
Public,
unauthorized,
Internet user

Directly request
and gain access to
another user’s info

•  Forceful browsing
•  Failure to demand
auth
•  Session Fixation

PR Incident
Non-compliance
Increase QSA
assessment cost

•  FD:3.2: session mgmt
•  SR:2.3.4: URL, forms data
•  FD: 3.4: Controller design
•  SD: 1.3: WebSeal integration
•  SP:1.3: Demanding Auth.

Public or partner,
authorized user

Upload malicious
content as part of
normal workflow

•  Upload exceptional
large file
•  Use file as injection
vector
•  Upload dual-type
file (such as GIFAR)

SLA violation
Data loss/
corruption
Wholesale
system breach

•  SP: 9.3: Virus scanning uploads
•  FD: 6.1: Upload quota
•  SP: 2.2: Filtering input
•  SD: 6.3: Re-encoding files
•  SR: 6.5: Spec for valid file types

(Security) Architect

Business Analyst Business Analyst

(Security) Architect

Don’t worry about “left to right”
Who What How Impact Mitigation
Public,
UNAUTHORIZED
, Internet user

Directly request
and gain access to
another user’s info

•  Forceful browsing
•  Failure to demand
auth
•  Session Fixation
•  CSRF

PR Incident
Non-compliance
Increase QSA
assessment cost
Fraud

•  FD:3.2: session mgmt
•  SR:2.3.4: URL, forms data
•  FD: 3.4: Controller design
•  SD: 1.3: WebSeal integration
•  SP:1.3: Demanding Auth.

Public or partner,
authorized user

Upload malicious
content as part of
normal workflow

•  Upload exceptional
large file
•  Use file as injection
vector
•  Upload dual-type file
(such as GIFAR)

SLA violation
Data loss/
corruption
Wholesale system
breach

•  SP: 9.3: Virus scanning uploads
•  FD: 6.1: Upload quota
•  SP: 2.2: Filtering input
•  SD: 6.3: Re-encoding files
•  SR: 6.5: Spec for valid file types

When testing finds an attack:

•  First, decide if its impact warrants further exploration

•  Are additional impacts possible?

•  Consider what conceptual goals the attack supports

•  Then consider who could launch the attack against the application

After analysis converges, iterate secure design

How much is enough?
Incrementally improve from wherever you are

Think about organization’s ‘arch-types’

•  B2C, n-tier*

•  Mobile

•  B2B, Legacy

•  ATMs

•  RIA**

Within each step, resist urge to do other steps

Start with step for corresponding SDL activity

Threat model what’s new and different

Alternative
Methods

Security Goals
Confidentiality

 limiting access and
disclosure to "the right
people“; preventing access
by or disclosure to "the wrong
people”.

Integrity

 the trustworthiness of
information resources

Availability

 information systems provide
access to authorized users

47 Wednesday, March 13, 13

CIA

A Few Words on STRIDE

A conceptual attack checklist:

•  Spoofing

•  Tampering

•  Repudiation

•  Information Disclosure

•  Denial of Service

•  Escalation of Privilege

•  Backed by DFDs

An Example DFD
Legend	

Attack Trees
Aggregate attack possibilities

Use OR,AND

Allow for decoration

•  Probability

•  Cost

•  Skills required, etc

From Bruce Schneier’s Blog

Annotate with design patterns

Design Patterns, isn’t that a bit Hifalutin?

I’m supposed to find exploits

Besides, I don’t have good design docs

These guys do not look like security researchers

Consider Patterns’
responsibilities

Document specific standards for implementing
each responsibility

Input Validation – Where
does responsibility lie?

!"#$%&'()*+

!"#$(,-#$./

0&$12#$.3

45$565#.(
!"#$

7.6(8"&$5%&.1

*99:%;5$%"&(,.1<.1

=>8 =>=

,91%&'

?"/;5$(@A@

,12#(>AB

*;.'%

*;.'%

*;.'%

!"#$#%&

'()"*
C5##D"13(
E.#.$(8:%.&$

)*+

F&$.1&.$

+(,-.(#

4=

?G%&(8:%.&$

+(**$/"0&

'1*$"(**&

'()"*

233.(#

+4,$3#

)*+
5$66.(7),(

F&$.1&.$

85;G.H

,$"1.

8/9$"&

+(,-.(#

:)-)+(,-(,

;)9(*

)4*C

<+=&

+(**$/"
:)-)+(,-(,

;)9(*

Explicit Responsibilities Mean Better Advice
Client Side

User Interface

Responsive, instant

Apply validation

•  Perhaps imperfect

•  Perhaps quickly

Give the user good advice

•  Be as specific as possible

•  Help the user

Server side
Business logic

Decode

Canonicalize

Apply

•  Known-good

•  White-list

•  Black list

Respond to attack

•  Defend self

•  Retain intelligence

•  Monitor

•  Prevent future attack

Know thy enemy & how they attack you (REDUX)

Who What How Impact Mitigation
Public,
unauthorized,
Internet user

Directly request
and gain access to
another user’s info

•  Forceful browsing
•  Failure to demand
auth
•  Session Fixation

PR Incident
Non-compliance
Increase QSA
assessment cost

•  FD:3.2: session mgmt
•  SR:2.3.4: URL, forms data
•  FD: 3.4: Controller design
•  SD: 1.3: WebSeal integration
•  SP:1.3: Demanding Auth.

Public or partner,
authorized user

Upload malicious
content as part of
normal workflow

•  Upload exceptional
large file
•  Use file as injection
vector
•  Upload dual-type
file (such as GIFAR)

SLA violation
Data loss/
corruption
Wholesale
system breach

•  SP: 9.3: Virus scanning uploads
•  FD: 6.1: Upload quota
•  SP: 2.2: Filtering input
•  SD: 6.3: Re-encoding files
•  SR: 6.5: Spec for valid file types

Who: Skill, Motivation, Access

What: Technology-agnostic conceptual

How: The specific tactics that might make attack successful

Impact: the cost of successful attack

Mitigation: traceability into elements designed to resist, identify, or
prevent attack

